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ABSTRACT 

In our earlier paper [1] we showed that given any element  x of a commutat ive  
unital Banach algebra A, there is an extension A '  of A such that the spectrum 
of x in A '  is precisely the essential spectrum of x in A. In [2], we showed further 
that if T is a cont inuous linear operator on a Banach space X, then there is an 
extension Y of X such that T extends continuously to an operator  T -  on Y, 
and the spectrum of T is precisely the approximate point spectrum of T. In this 
paper we take the second of these results, and show further that if X is a Hilbert 
space then we can ensure that Y is also a Hilbert space; so any operator T on a 
Hilbert space X is the restriction to one copy of X of an operator T -  on X ~) X, 
whose spectrum is precisely the approximate point spectrum of T. This result is 
"best  possible" in the sense that if T is any extension to a larger Banach space 
of an operator  T, it is a s tandard exercise that the approximate point spectrum 
of T is contained in the spectrum of ~'. 

§I.  Introduct ion 

The classical example of inverse producing extensions is surely the right shift 

operator, in the following way. Let X be a Hiibert space with orthonormal basis 

{e,: i -> 0}, and let T be the right shift operator T: e~ ~ e~+~. It is well known that 

T has norm 1, the spectrum of T is the unit disk {z (EC: [z I--< 1}, but the 

approximate point spectrum of T is just the unit circle {z ~ C: I z I = 1}. We can 

eliminate the open unit disk from the spectrum of T; to do this, it suffices to add 

on new orthonormal basis vectors {e~: i E Z, i < 0}, and extend T as 

7": ei ---> ei+, (all i E Z). 
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has an obvious inverse ~'-~: e~ ~ e l l ,  and indeed, the whole of the open unit 

disk is removed from the spectrum of T. The object of this paper is to mimic this 

result as closely as possible in the case of a general continuous operator on X. 

In order to do this we are going to draw on the results of [2], in which we 

established that there must be some extension of X (not necessarily another 

Hilbert space) to which T extends and loses all but its approximate point 

spectrum. Let us begin with some definitions. 

DEFINITION 1.1. Let f~ denote the collection of all countable ordinals. 

DEFINITION 1.2. Given the operator T on a Hilbert space X, let Orap(T) be the 

approximate point spectrum of T; 

trap(T) = {A ~ C :  inf{ll(AI- T)x 11: x ~ X, llxl[-- 1}=0}. 

(Note that in [2], §2.2 we call this set the "essential spectrum" of T.) 

DEFINITION 1.3. Let us choose, once and for all, a collection of bounded 

open neighbourhoods (U~)7=~ of o%(T) with the following properties. 

(1) For each i ~ N, U, = ~+~ (where 0 denotes the closure of U). 

(2) Every component of U intersects O',p(T). 

(3) NT=, U~ = o%(T). 

Analogous definitions are in Sections 2.1 and 2.2 of [2]. 

At the corresponding point in [2] we proceeded to embark on the definitions 

of extensions X~ of X, one for each ordinal a E l i .  (Briefly, each 

X~,+, = l®( X,, )/ co( X,, ) and when a is a limit ordinal, X~ is the completion of the 

direct limit of the ones preceding it, with linking maps defined in an obvious 

way.) It is not necessary for our purposes to use these larger spaces; we merely 

quote the following useful definitions and results for the ordinal a = 1. 

DEFINITION 1.4. With the notation of [2], we have X1 = X ([2], Definition 

2.8(1)), and for each n E N we define V~ ")= V (") to be the vector space of all 

bounded analytic functions U, ---) X ([2], Definition 3.1). On V (~) we impose the 

supremum norm 11. ]]~")= [1. [[("), 

Ilfll,.,--- sup IIf(z)ll,,. 
zEUn 

Given a sequence e = (e,):=~ we may define another norm 11"11"' 

follows ([2], Definition 3.2): 

on V~ ") as 
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f 
Ilfll"'--- inf {lie I1× + E II)~ II ''~: c E x ,  f, E V ('), 

L i=1  

c + ~ e,f~ (z)--  f (z )  for all z E U, / . 
i = l  J 

We observe that, given e, > 0, the two norms are certainly equivalent. 

We are interested (as in [2], Definition 3.3) in certain quotient spaces 

Y(")= V¢")/Z ("), where Z (") is the norm closed subspace of V ~"~ generated by 

those analytic functions f which satisfy 

f (z)  = z g ( z ) -  Tog(z)  = ( z l -  T)og(z) 

for all z E U., where g is another element of V (°). 

Then we define (as in [2], §3.3(2)) the map 

q'("': X----> (Y'"', I1" I1"') 

which sends x E X into Y(") as the equivalence class of the constant function 

x E V '"). The sequence (e~)L, is said to be admissible (for the ordinal 1) if 

~,'"': x - - ,  (w'"~,ll. II"')/z ("' is an isometry. It is a consequence of [21, Theorem 

3.5, that there is a decreasing sequence of strictly positive constants (e~)7=, such 

that for all n the sequence (E~)7=, is admissible for the ordinal 1. 

Let us choose such a sequence (e~)7~,, and proceed to define some Euclidean 

extensions of X. 

When dealing with the Hilbert space there is a slight technical blemish in the 

final result; if X is to be isometrically embedded in Y we cannot ensure that T 

extends to Y with exactly the same norm. Instead, the best we can do is to 

choose a fixed ,1 E (0, 1) and ensure that X is embedded isometrically in the 

Hilbert space Y, and T extends to an operator T-  on Y, with 

II T-II <= (1 - n) - ' "  II Tll. 

Suppose, then, that -q > 0 is given. Instead of taking the supremum norm I1" II (° on 

V "), let us consider the Euclidean norm 

Ilfl[,.2-- 1 i i f ( z ) l l 2 d , ~ ( z )  , 

where A is Lebesgue measure on C. If X is a Hilbert space then I1" Ik2 is a 

Euclidean norm on V "). 

Let us write A, = d(U.+,,OU.). Then for each z E U,+,, f E  V ("~ and r e  

(0, A.) we have, by the Cauchy integral formula, 
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hence 

1/o2  f ( z )  = ~ f ( z  + re'°)dO 

• f ( z  + re~°) • rdrdO f f z ) = " - ~  -o =o 

'L 
= IrA2 • f(w)dA(w); 

~ B ( Z , A . )  

Ilfll,-+''= sup IIf(z)ll 
ZEUn+I 

1 L ,I = sup - - - ~ "  f(w)dA(~o 

1 
= ~rA~ • ~,. IIf(w)lld,~(w) 

= ~A~ • II / (~)fVU~(w))  ''~ 
E Un 

(by the Jo rdan-H61der  inequality) 

= A ( u . ) .  Ilfll..2. 

So the sup remum norm Ilfll '"+' '  satisfies 

(6.1) Ilfll'"+')- -< ~ . .  Ilfll..2 

where a .  is a fixed constant .  

N o w  if (e~)7:~ is an admissible sequence,  we know that  if we define our  

funct ion space V = U~.~ V ¢° as in the proof  of [2], T h e o r e m  5, we have,  for  all 
c E X ,  

II ¢ IIx = II c IIv 

= i n f  {lid IIx + ,=,E IIA I1"': n e N , :  e V"',d~X 

and for some g E V ¢"~ we have, for all A E~ U.,  

d + ~  ~,~( ,~)+ (,~I - r )og( ,~ )  = c 

_--<inf I ld l lx+ I I f , [ P : d +  e , f ~ + ( M - r ) o g = - c  on U~ 
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(6.2) = inf {ltd]l× + ,=22 a,-,llf~ 11~-,.2: d E X, n E N, 

each/~ E V ('-'), and d + ~ e,]] + (hi  - T)o g - c on U,}(by (6.1)) 

=< • i n f  + '1 a ~ - t  ~-~,2 : 
i=2 

(by the Jordan-HSlder inequality) 

( \ 1/2 
| - i  2 2 . 

I l f lP ,~=inf  I l a l l k + ~ ' 7  ~',-,11~11,-,,~) • 
i=2 

d E X, f~ E V (i-° (i = 2 . . . . .  n), and for some 

(6.3) 
g E V ("), we have for all h E U,, 

d + 2 E,f~(h)+ ( X I - T ) o g ( h )  = f ( h ) / .  
i=2 J 

We claim that the expression I1" IIv.2 is a Euclidean seminorm on V. Let V- be the 

quotient space V/Z where Z = { f E  V: Ilfllv,2=O}. Consider the cartesian 

product X (~7=, V "). Those elements of this cartesian product which have finite 

norm 

( l - i  2 2 ~1/2 
II(d, f2,f3,fi . . . .  )11-- ~llalli,+~,7 ~,-,llf, ll,-,, V 

2 

are a normed vector space with a Euclidean norm. V- is a quotient space of this 

normed vector space in an obvious way, so it too is a Euclidean space. Let Q be 

the completion of V-. V is a Hilbert space, and we claim that X is 

isomorphically embedded in ~" as the equivalence classes of the constant 

functions of V. 

For if f ~ V is a constant c, in view of (6.2) we have 

II c IIv,~ --> (1  - n)ll c I1~. 

However, it is obvious from the definition (6.3) of II • IIv,~ that 

II c II v.2 _-< II c I1,,. 

So X is embedded up to ( 1 - r / y '  isomorphism in (f',tl'llv.2). Moreover 7 

extends to f '  as the operator 

<_- ( 1  - r l ) - ' '  II c IIv,~ 

where for all f E V, we define 
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T - :  re__, p 

: [fl ~ [To f] 

which, given the definition (6.3) of the norm on V, clearly has norm less than or 

equal to II TII. 
All but the approximate point spectrum of T is eliminated, because, as in [2], 

proof of Theorem 5, i f / ~  ~r,p(T) then the operator 

R~,: [ f ] ~  [g] where g (A)=  (/z - A)-'f(A) 

gives a continuous inverse for / x I -  T-.  We omit the proof of this, since the 

details are very similar to those in [2], §5. So I~" is a Hilbert space in which X is 

embedded up to (1 - 71) -t equivalence; T-  is a continuous extension of T to 1~', 

and the spectrum of T-  is precisely the approximate point spectrum of T. It is 

trivial to adjust the norm on (z so that X is embedded isometrically (let W be 

the orthogonal complement of X in Q and consider the Euclidean norm 

I lf l l = (11 w IIL  + II x I lY ''; 

where w E W, x tE X, w + x = f), but then II T-II may be increased by a factor of 
(1- r/) -1. So we have the following theorem. 

THEOREM. Given a Hilbert space X and T E L ( X ) ,  e E(0,1) ,  there is a 

Hilbert space Y D X and an operator T-  ~ L (Y )  which extends T, such that 

II T-II--< II TII(1 + ~), and the spectrum of T-  is the approximate point spectrum of 

T. 

It is trivial that the (infinite) dimension of Y / X  is the same as that of X, so the 

theorem may alternatively be written as follows: 

THEOREM. If  T is a continuous linear operator on a Hilbert space H, and if 

r / E  (0, 1), then T is the restriction to one copy of H of an operator T -  on the Hilbert 

space H 0 H, such that 

II T-II --< (1 - n ) - "  II T II, 

and the spectrum of T-  is precisely the approximate point spectrum of T. 
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